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ABSTRACT INTRODUCGTION MECHANICAL SWITCHING VIR FLEXO UNIAKIAL 180° DOMAIN WALL
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EO Figure (a) shows the setup of the simulation system with the angle
gl O representing the angle between the wall and the [100] direction.
PHASE-FIEI'D MonEl‘ Phase-field simulation of mechanical switching via flexoelectric effect. The Figure (b) shows the maximum values of the induced Bloch and Neel
calculated distribution of stress components o,(a) and o4(b), polarization components as a function of 6. When 6 = nmr/4 (n is integer), the 180
components P,(c) and P,(a). Clearly, the domain beneath the AFM tip is domain wall is Ising — Neel like (Figure c); while for the other angles
_ switched. However, as shown in the polarization profile () and (f), without the wall is Ising — Neel — Bloch like (Figure d). We found the new
N, flexoelectric effect the domain cannot be switched. features are entirely due to the flexoelectric effect, by comparing the

results with and without flexoelectric effect.
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the flexoelectric contribution By_varying the !oad_ and the film thickness, we calculate_d the dependence

of switched domain width on these two factors, as shown in (a). (b - €) show

fijk| aPk ﬁgij the polarization, stress components and flexoelectric effect of 1000nN load

vj P’ ngij) — 9 (a gij P Pk) on 25 nm film. The switched domain is well inside the contact area, because
X | the flexoelectric effect is weak at the film bottom.
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